I hear this a lot: “My entire family has diabetes and I know I am going to get it as well. What can I do if it’s all in my genes?” Seems like anyone can insert whichever disease runs in their family — maybe it is cancer or heart disease or Alzheimer’s — into that lament as well. It can be scary and disheartening to look at your family and see that half of them suffered from something like colon cancer. You can’t help but think this is your fate too. Thank you, genetics! But will this really be your fate? The good news is your “bad” genes are not set in stone. Geneticists have learned that our DNA, composed of thousands of individual genes, is more like a blueprint rather than a rigid foundation. This means that you can actually influence your genes — both positively and negatively.
Epigenetics — Influencing Gene Expression
Epigenetics essentially means “above the genes.” It’s a field of study that looks at how factors external to your genes can influence how your genes are turned off or on — what geneticists call “gene expression.” All genes have a sequence of DNA called a promoter, which controls the expression of the gene. Certain compounds called transcription factors interact with the gene’s promoter region to activate or deactivate gene expression. Transcription factors can be intrinsic (made by your body) or extrinsic (made by nature). And this is why epigenetics is so exciting. We are discovering more and more extrinsic transcription factors that, by interacting with promoter regions, can influence how your genes are expressed. You can control your genetic destiny!
Natural Transcription Factors that Ease Inflammation
Is black the new “green” tea? Both types of tea contain theaflavins — natural transcription factors that turn off inflammatory pathways by deactivating the promoter regions of pro-inflammatory genes. Black tea, however, contains higher amounts. Research has shown that theaflavins present in black tea can have multiple applications for arterial health with their strong anti-inflammatory properties — specifically the ability to suppress the expression of pro-inflammatory genes.
1-4 Reducing chronic inflammation is a key step to optimize cardiovascular health. An increasing number of scientists recognize the critical need to protect the arterial wall against inflammatory damage. If damage does occur, the inside lining of the artery can malfunction with subsequent development of atherosclerosis. Curcumin, a compound from turmeric, is also an anti-inflammatory transcription factor. In one animal study, curcumin was shown to reduce the production of a particularly strong pro-inflammatory molecule, interleukin-2 (IL-2). The researchers believed that curcumin directly inhibited the IL-2 gene from being expressed.
5 This has implications for cancer treatments. Inflammatory processes throughout the body are thought to promote cancer development. Curcumin acts at multiple gene targets, like IL-2, to reduce the production of pro-inflammatory proteins. When a group of colon cancer patients ingested 3.6 grams of curcumin each day for four months, their blood levels of pro-inflammatory proteins dropped by up to 62%.
6
Increasing Cell Energy with Natural Transcription Factors
Cell energy is all about function. Function is all about longevity. If a cell can’t make energy, then it can’t function; if it can’t function, it dies. So things that support cell energy production can encourage cell longevity and, most likely, your longevity as well. The primary mechanism for loss of cell energy centers on the mitochondria, which are the cells’ energy producers. It’s well-supported in the medical literature that we can lose a significant amount of our mitochondria as we age, resulting in cardiovascular and brain cell diseases.
7 Again, all of this goes back to cell energy. If you lose a significant number of mitochondria, then the cell will soon lose its ability to function. What we need are natural transcription factors that can activate expression of genes that make new mitochondria. And we have them: PQQ and nicotinamide riboside. PQQ, or pyrroloquinoline quinone, is an essential nutrient found in some fruits like kiwi. When consumed, PQQ enters the cell and eventually makes its way into the nucleus where the DNA resides. Once there, it binds to and activates the promoter regions of genes that code for the proteins involved in making new mitochondria.
8 Preclinical studies reveal that when deprived of dietary PQQ, animals exhibit stunted growth, compromised immunity, impaired reproductive capability, and, most importantly,
fewer mitochondria in their tissue. Rates of conception, the number of offspring, and survival rates in juvenile animals are also significantly reduced in the absence of PQQ. Introducing PQQ back into the diet reverses these effects, restoring systemic function while simultaneously increasing mitochondrial number and energetic efficiency.
9-11 Nicotinamide riboside, a vitamin B3 metabolite, acts more like an indirect natural transcription factor. It boosts the levels of NAD+, or nicotinamide adenine dinucleotide, a compound in the cells which activates the intrinsic transcription factors used for mitochondrial production.
12 Whether through direct or indirect activity, these two natural transcription factors can increase cell energy production in a powerful way … by making brand new cellular powerhouses!
Activating Cell Protection Genes
Cell protection genes are called sirtuins. The genes code for proteins that help the cell adapt to stress. When sirtuins are expressed, cells manage energy better, improve cell-to-cell communication, and control inflammation. Unless you’re willing to practice strict calorie restriction, your body will not activate the sirtuin genes. This is where resveratrol can help. Resveratrol — a natural compound found in red wine, chocolate, and certain plants — has demonstrated powerful transcription effects on sirtuins, which may underlie its ability to lengthen life. In a Harvard University study, investigators noted that a high-calorie diet produced numerous changes in gene expression. However, supplemental resveratrol counteracted the effects of this high-calorie diet in 144 of 153 subjects and significantly altered genetic expression of sirtuins.
13
What You Need to Know
Your genes are not set in stone. This is great news for those of us with some “bad” genes. The genes that you’ve inherited act more like a blueprint for constructing your internal environment. And like all blueprints, you can make modifications to them, granted subtle ones, to construct a healthier, internal you. Epigenetics ultimately offers hope. As new studies continue to reveal which foods and nutrients influence gene expression, you’ll soon be able to choose your very own epigenetic regimen — a regimen that will turn on genes you need and turn off “bad” genes that run in your family.
References:
-
Inflamm Res. 2011 May;60(5):493-500.
-
Invest New Drugs. 2011 Apr;29(2):225-31.
-
Folia Biol (Praha). 2007;53(5):164-72.
-
Crit Care Med. 2004 Oct;32(10):2097-103.
-
Br J Nutr. 2011 Oct;106 Suppl 1:S198-201.
-
Clin Cancer Res. 2004 Oct 15;10(20):6847-54.
-
Clin Sci (Lond). 2004 Oct;107(4):355-64.
-
J Biol Chem. 2010 Jan 1;285(1):142-52.
-
J Nutr. 2006 Feb;136(2):390-6.
-
Exp Biol Med (Maywood). 2003 Feb;228(2):160-6.
-
Biochim Biophys Acta. 2006 Nov;1760(11):1741-8.
-
EMBO Molecular Medicine. Vol 6 | No 6 | 2014.
-
Cell. 2006 Dec 15;127(6):1109-22.